Skip to main content

Bewegende Gemiddelde Outokorrelasie


Doel: Maak seker Random Outokorrelasie erwe (. Box en Jenkins, pp 28-32) is 'n algemeen gebruikte instrument vir die beheer van ewekansigheid in 'n datastel. Dit willekeur word vasgestel deur die berekening van outokorrelasies vir datawaardes op verskillende tyd loop. As ewekansige, moet so 'outokorrelasies wees naby nul vir enige en alle tye-lag skeidings. As nie-ewekansige, sal dan een of meer van die outokorrelasies aansienlik nie-nul wees. Daarbenewens is outokorrelasie erwe wat in die model identifikasie weg gebaan vir Box-Jenkins outoregressiewe bewegende gemiddelde tydreeksmodelle. Outokorrelasie is slegs een maat van Random Let daarop dat ongekorreleerd nie noodwendig ewekansige beteken. Data wat beduidende outokorrelasie het nie lukraak. Maar data wat nie beduidende outokorrelasie nie wys kan steeds uitstal nie-willekeur op ander maniere. Outokorrelasie is net een maatstaf van willekeur. In die konteks van model validering (wat is die primêre tipe willekeur ons dicuss in die handboek) en kontroleer vir outokorrelasie is tipies 'n voldoende toets van ewekansigheid sedert die residue van 'n swak passing modelle is geneig om nie-subtiele willekeur te vertoon. Maar sommige programme vereis dat 'n meer streng bepaling van willekeur. In sulke gevalle, 'n battery van toetse, wat kan insluit die nagaan vir outokorrelasie, toegepas sedert data nie-ewekansige in baie verskillende en dikwels subtiele maniere kan wees. 'N Voorbeeld van waar 'n meer streng tjek vir willekeur nodig sou wees in die toets van ewekansige getal kragopwekkers. Monster Plot: outokorrelasies moet wees naby-nul vir willekeur. So is dit nie die geval in hierdie voorbeeld en dus die willekeur aanname versuim Hierdie voorbeeld outokorrelasie plot toon dat die tydreeks is nie lukraak nie, maar eerder 'n hoë graad van outokorrelasie tussen aangrensende en naby-aangrensende waarnemings. Definisie: R (h) teenoor h Outokorrelasie erwe word gevorm deur Vertikale as: Outokorrelasie koëffisiënt waar C h is die outokovariansiefunksie en C 0 is die variansie funksie Let daarop dat R h is tussen -1 en 1. Let daarop dat sommige bronne kan gebruik maak van die volgende formule vir die outokovariansiefunksie Hoewel hierdie definisie het minder vooroordeel, die (1 / N) formulering het 'n paar wenslik statistiese eienskappe en is die vorm wat die algemeenste gebruik word in die statistieke literatuur. Sien bladsye 20 en 49-50 in Chat Field vir meer inligting. Horisontale as: tydsverloop h (h 1, 2, 3) Die bo lyn bevat ook verskeie horisontale verwysing lyne. Die middellyn is op nul. Die ander vier lyne is 95 en 99 vertroue bands. Let daarop dat daar twee afsonderlike formules vir die opwekking van die vertroue bands. As die outokorrelasie plot gebruik word om te toets vir willekeur (dws daar is geen tyd afhanklikheid in die data), is die volgende formule aanbeveel: waar n die steekproefgrootte, Z is die kumulatiewe verdelingsfunksie van die standaard normale verspreiding en (alfa ) is die betekenis vlak. In hierdie geval, het die vertroue bands vaste wydte wat afhanklik is van die steekproefgrootte. Dit is die formule wat gebruik is om die vertroue bands in die bogenoemde plot te genereer. Outokorrelasie erwe word ook gebruik in die model identifikasie weg gebaan vir pas ARIMA modelle. In hierdie geval, is 'n bewegende gemiddelde model aanvaar vir die data en die volgende vertroue bands moet gegenereer word: waar k die lag, N is die steekproefgrootte, Z is die kumulatiewe verdelingsfunksie van die standaard normale verspreiding en (alfa) is die betekenis vlak. In hierdie geval, die vertroue bands toeneem soos die lag verhoog. Die outokorrelasie plot kan antwoorde vir die volgende vrae verskaf: Is die data ewekansige Is 'n waarneming wat verband hou met 'n aangrensende opmerking is 'n waarneming wat verband hou met 'n waarneming twee keer verwyder (ens) Is die waargenome tydreekse wit geraas is die waargenome tydreekse sinusvormige is die waargeneem tyd reeks outoregressiewe Wat is 'n geskikte model vir die waargenome tydreeks is die model geldig en voldoende is die formule SS / sqrt geldige belang: Verseker geldigheid van ingenieurswese gevolgtrekkings Random (saam met 'n vaste model, vaste variasie, en 'n vaste verspreiding) is een van die vier aannames wat tipies onderliggend al meting prosesse. Die willekeur aanname is van kritieke belang vir die volgende drie redes: Die meeste standaard statistiese toetse afhang van willekeur. Die geldigheid van die toets gevolgtrekkings is direk gekoppel aan die geldigheid van die willekeur aanname. Baie algemeen gebruikte statistiese formules afhang van die willekeur aanname, die mees algemene formule om die formule vir die bepaling van die standaard afwyking van die steekproefgemiddelde: waar s die standaardafwyking van die data. Hoewel swaar gebruik, die resultate van die gebruik van hierdie formule is van geen waarde nie, tensy die willekeur aanname hou. Vir eenveranderlike data, die standaard model is As die data is nie van ewekansige, hierdie model is verkeerd en ongeldig, en die skattings vir die parameters (soos die konstante) geword nonsens en ongeldig. In kort, as die ontleder nie kyk vir willekeur, dan is die geldigheid van baie van die statistiese gevolgtrekkings word vermoed. Die outokorrelasie plot is 'n uitstekende manier om die beheer van sodanige randomness. A Rima staan ​​vir outoregressiewe geïntegreerde bewegende gemiddelde modelle. Eenveranderlike (enkele vektor) ARIMA is 'n vooruitskatting tegniek wat die toekomstige waardes van 'n reeks ten volle gebaseer op sy eie traagheid projekte. Die belangrikste aansoek is op die gebied van korttermyn voorspelling wat ten minste 40 historiese data punte. Dit werk die beste wanneer jou data toon 'n stabiele of konsekwent patroon met verloop van tyd met 'n minimum bedrag van uitskieters. Soms genoem word Posbus-Jenkins (ná die oorspronklike skrywers), ARIMA is gewoonlik beter as gladstrykingstegnieke eksponensiële wanneer die data is redelik lank en die korrelasie tussen die verlede waarnemings is stabiel. As die data is kort of baie volatiel, dan kan 'n paar smoothing metode beter te presteer. As jy nie ten minste 38 datapunte het, moet jy 'n ander metode as ARIMA oorweeg. Die eerste stap in die toepassing van ARIMA metode is om te kyk vir stasionariteit. Stasionariteit impliseer dat die reeks bly op 'n redelik konstante vlak met verloop van tyd. As 'n tendens bestaan, soos in die meeste ekonomiese of besigheid aansoeke, dan is jou data nie stilstaan. Die data moet ook 'n konstante stryd in sy skommelinge oor tyd te wys. Dit is maklik gesien met 'n reeks wat swaar seisoenale en groei teen 'n vinniger tempo. In so 'n geval, sal die wel en wee van die seisoen meer dramaties met verloop van tyd. Sonder hierdie stasionariteit voorwaardes voldoen word, baie van die berekeninge wat verband hou met die proses kan nie bereken word nie. As 'n grafiese plot van die data dui stationariteit, dan moet jy verskil die reeks. Breukmetodes is 'n uitstekende manier om die transformasie van 'n nie-stationaire reeks om 'n stilstaande een. Dit word gedoen deur die aftrekking van die waarneming in die huidige tydperk van die vorige een. As hierdie transformasie slegs een keer gedoen word om 'n reeks, sê jy dat die data het eers differenced. Hierdie proses elimineer wese die tendens as jou reeks groei teen 'n redelik konstante tempo. As dit groei teen 'n vinniger tempo, kan jy dieselfde prosedure en verskil die data weer aansoek doen. Jou data sal dan tweede differenced. Outokorrelasies is numeriese waardes wat aandui hoe 'n data-reeks is wat verband hou met self met verloop van tyd. Meer presies, dit meet hoe sterk datawaardes op 'n bepaalde aantal periodes uitmekaar gekorreleer met mekaar oor tyd. Die aantal periodes uitmekaar is gewoonlik bekend as die lag. Byvoorbeeld, 'n outokorrelasie op lag 1 maatreëls hoe waardes 1 tydperk uitmekaar gekorreleer met mekaar oor die hele reeks. 'N outokorrelasie op lag 2 maatreëls hoe die data twee periodes uitmekaar gekorreleer regdeur die reeks. Outokorrelasies kan wissel van 1 tot -1. 'N Waarde naby aan 1 dui op 'n hoë positiewe korrelasie, terwyl 'n waarde naby aan -1 impliseer 'n hoë negatiewe korrelasie. Hierdie maatreëls is meestal geëvalueer deur middel van grafiese plotte genoem correlagrams. A correlagram plotte die motor - korrelasie waardes vir 'n gegewe reeks by verskillende lags. Dit staan ​​bekend as die outokorrelasie funksie en is baie belangrik in die ARIMA metode. ARIMA metode poog om die bewegings in 'n stilstaande tyd reeks beskryf as 'n funksie van wat is outoregressiewe en bewegende gemiddelde parameters genoem. Dit is waarna verwys word as AR parameters (autoregessive) en MA parameters (bewegende gemiddeldes). 'N AR-model met slegs 1 parameter kan geskryf word as. X (t) 'n (1) X (t-1) E (t) waar x (t) tydreekse wat ondersoek word 'n (1) die outoregressiewe parameter van orde 1 X (t-1) die tydreeks uitgestel 1 periode E (t) die foutterm van die model beteken dit eenvoudig dat enige gegewe waarde X (t) kan verduidelik word deur 'n funksie van sy vorige waarde, X (t-1), plus 'n paar onverklaarbare ewekansige fout, E (t). As die beraamde waarde van A (1) was 0,30, dan is die huidige waarde van die reeks sal wees met betrekking tot 30 van sy waarde 1 periode gelede. Natuurlik, kan die reeks word wat verband hou met meer as net 'n verlede waarde. Byvoorbeeld, X (t) 'n (1) X (t-1) A (2) X (t-2) E (t) Dit dui daarop dat die huidige waarde van die reeks is 'n kombinasie van die twee onmiddellik voorafgaande waardes, X (t-1) en X (t-2), plus 'n paar random fout E (t). Ons model is nou 'n outoregressiewe model van orde 2. bewegende gemiddelde modelle: 'n Tweede tipe Box-Jenkins model is 'n bewegende gemiddelde model genoem. Hoewel hierdie modelle lyk baie soortgelyk aan die AR model, die konsep agter hulle is heel anders. Bewegende gemiddelde parameters verband wat gebeur in tydperk t net om die ewekansige foute wat plaasgevind het in die verlede tyd periodes, naamlik E (t-1), E (t-2), ens, eerder as om X (t-1), X ( t-2), (xt-3) as in die outoregressiewe benaderings. 'N bewegende gemiddelde model met 'n MA termyn kan soos volg geskryf word. X (t) - B (1) E (t-1) E (t) Die term B (1) genoem word 'n MA van orde 1. Die negatiewe teken voor die parameter is slegs vir konvensie en word gewoonlik gedruk uit motor - dateer deur die meeste rekenaarprogramme. Bogenoemde model eenvoudig sê dat enige gegewe waarde van X (t) direk verband hou net aan die ewekansige fout in die vorige tydperk, E (t-1), en die huidige foutterm, E (t). Soos in die geval van outoregressiemodelle, kan die bewegende gemiddelde modelle uitgebrei word na 'n hoër orde strukture wat verskillende kombinasies en bewegende gemiddelde lengtes. ARIMA metode kan ook modelle gebou word dat beide outoregressiewe en gemiddelde parameters saam beweeg inkorporeer. Hierdie modelle word dikwels na verwys as gemengde modelle. Hoewel dit maak vir 'n meer ingewikkelde voorspelling instrument, kan die struktuur inderdaad die reeks beter na te boots en produseer 'n meer akkurate skatting. Suiwer modelle impliseer dat die struktuur bestaan ​​slegs uit AR of MA parameters - nie beide. Die ontwikkel deur hierdie benadering modelle word gewoonlik genoem ARIMA modelle omdat hulle 'n kombinasie van outoregressiewe (AR) te gebruik, integrasie (I) - verwys na die omgekeerde proses van breukmetodes die voorspelling te produseer, en bewegende gemiddelde (MA) operasies. 'N ARIMA model word gewoonlik gestel as ARIMA (p, d, q). Dit verteenwoordig die orde van die outoregressiewe komponente (p), die aantal breukmetodes operateurs (d), en die hoogste orde van die bewegende gemiddelde termyn. Byvoorbeeld, ARIMA (2,1,1) beteken dat jy 'n tweede orde outoregressiewe model met 'n eerste orde bewegende gemiddelde komponent waarvan die reeks is differenced keer om stasionariteit veroorsaak. Pluk die reg spesifikasie: Die grootste probleem in die klassieke Box-Jenkins probeer om te besluit watter ARIMA spesifikasie gebruik - i. e. hoeveel AR en / of MA parameters in te sluit. Dit is wat die grootste deel van Box-Jenkings 1976 is gewy aan die identifikasieproses. Dit was afhanklik van grafiese en numeriese eval - uation van die monster outokorrelasie en gedeeltelike outokorrelasiefunksies. Wel, vir jou basiese modelle, die taak is nie te moeilik. Elk outokorrelasiefunksies dat 'n sekere manier te kyk. Maar wanneer jy optrek in kompleksiteit, die patrone is nie so maklik opgespoor. Om sake nog moeiliker maak, jou data verteenwoordig slegs 'n voorbeeld van die onderliggende proses. Dit beteken dat steekproeffoute (uitskieters, meting fout, ens) die teoretiese identifikasie proses kan verdraai. Dit is waarom tradisionele ARIMA modellering is 'n kuns eerder as 'n science.2.1 bewegende gemiddelde modelle (MA modelle) tydreeksmodelle bekend as ARIMA modelle kan die volgende insluit outoregressiewe terme en / of bewegende gemiddelde terme. In Week 1, het ons geleer 'n outoregressiewe term in 'n tydreeks model vir die veranderlike x t is 'n vertraagde waarde van x t. Byvoorbeeld, 'n lag 1 outoregressiewe termyn is x t-1 (vermenigvuldig met 'n koëffisiënt). Hierdie les definieer bewegende gemiddelde terme. 'N bewegende gemiddelde termyn in 'n tydreeks model is 'n verlede fout (vermenigvuldig met 'n koëffisiënt). Laat (WT omslaan N (0, sigma2w)), wat beteken dat die w t is identies, onafhanklik versprei, elk met 'n normaalverdeling met gemiddelde 0 en dieselfde afwyking. Die 1 ste orde bewegende gemiddelde model, aangedui deur MA (1) is (xt mu wt theta1w) Die 2de orde bewegende gemiddelde model, aangedui deur MA (2) is (xt mu wt theta1w theta2w) Die Q de orde bewegende gemiddelde model , aangedui deur MA (Q) is (xt mu wt theta1w theta2w kolle thetaqw) Nota. Baie handboeke en sagteware programme definieer die model met negatiewe tekens voor die terme. Dit nie die geval verander die algemene teoretiese eienskappe van die model, hoewel dit flip die algebraïese tekens van beraamde koëffisiënt waardes en (unsquared) terme in formules vir ACFs en afwykings. Jy moet jou sagteware kyk om te kontroleer of negatiewe of positiewe tekens is gebruik om korrek te skryf die beraamde model. R gebruik positiewe tekens in sy onderliggende model, soos ons hier doen. Teoretiese Eienskappe van 'n tydreeks met 'n MA (1) Model Let daarop dat die enigste nie-nul waarde in die teoretiese ACF is vir lag 1. Alle ander outokorrelasies is 0. So 'n monster ACF met 'n beduidende outokorrelasie net by lag 1 is 'n aanduiding van 'n moontlike MA (1) model. Vir belangstellende studente, bewyse van hierdie eienskappe is 'n bylae tot hierdie opdragstuk. Voorbeeld 1 Veronderstel dat 'n MA (1) model is x t 10 w t 0,7 w t-1. waar (WT omslaan N (0,1)). So het die koëffisiënt 1 0.7. Die teoretiese ACF gegee word deur 'n plot van hierdie volg ACF. Die plot net aangedui is die teoretiese ACF vir 'n MA (1) met 1 0.7. In die praktyk, 'n monster gewoond gewoonlik verskaf so 'n duidelike patroon. Die gebruik van R, gesimuleerde ons N 100 monster waardes gebruik te maak van die model x t 10 w t 0,7 w t-1 waar w t IID N (0,1). Vir hierdie simulasie, 'n tydreeks plot van die steekproefdata volg. Ons kan nie sê baie van hierdie plot. Die monster ACF vir die gesimuleerde data volg. Ons sien 'n skerp styging in lag 1 gevolg deur die algemeen nie-beduidende waardes vir lags afgelope 1. Let daarop dat die monster ACF kom nie ooreen met die teoretiese patroon van die onderliggende MA (1), en dit is dat al outokorrelasies vir lags afgelope 1 sal wees 0 . 'n ander voorbeeld sou 'n effens verskillende monster ACF hieronder getoon, maar sal waarskynlik dieselfde breë funksies. Theroretical Eienskappe van 'n tydreeks met 'n MA (2) model vir die MA (2) model, teoretiese eienskappe is soos volg: Let daarop dat die enigste nie-nul waardes in die teoretiese ACF is vir lags 1 en 2. outokorrelasies vir hoër lags is 0 . So, 'n monster ACF met 'n beduidende outokorrelasies by lags 1 en 2, maar nie-beduidende outokorrelasies vir hoër lags dui op 'n moontlike MA (2) model. IID N (0,1). Die koëffisiënte is 1 0.5 en 2 0.3. Want dit is 'n MA (2), sal die teoretiese ACF nul waardes het net by lags 1 en 2. Waardes van die twee nie-nul outokorrelasies is 'n plot van die teoretiese ACF volg. Soos byna altyd die geval is, monster data gewoond te tree heeltemal so perfek as teorie. Ons gesimuleerde N 150 monster waardes vir die model x t 10 w t 0,5 w t-1 0,3 w t-2. waar w t IID N (0,1). Die tydreekse plot van die data volg. Soos met die tydreeks plot vir die MA (1) voorbeeld van die data, kan nie vir jou sê baie daaruit. Die monster ACF vir die gesimuleerde data volg. Die patroon is tipies vir situasies waar 'n MA (2) model nuttig kan wees. Daar is twee statisties beduidende spykers by lags 1 en 2, gevolg deur nie-beduidende waardes vir ander lags. Let daarop dat as gevolg van steekproeffout, die monster ACF nie die teoretiese patroon presies ooreenstem. ACF vir Algemene MA (Q) Models n eiendom van MA (Q) modelle in die algemeen is dat daar nie-nul outokorrelasies vir die eerste Q lags en outokorrelasies 0 vir alle lags GT q. Nie-uniekheid van verband tussen waardes van 1 en (rho1) in MA (1) Model. In die MA (1) model, vir enige waarde van 1. die wedersydse 01/01 gee dieselfde waarde vir so 'n voorbeeld, gebruik 0,5 vir 1. en gebruik dan 1 / (0,5) 2 vir 1. Jy sal kry (rho1) 0.4 in beide gevalle. Om 'n teoretiese beperking genoem inverteerbaarheid bevredig. Ons beperk MA (1) modelle om waardes met absolute waarde minder as 1. In die voorbeeld net gegee, 1 0.5 sal 'n toelaatbare parameter waarde wees nie, terwyl 1 1 / 0.5 2 nie. Inverteerbaarheid van MA modelle 'n MA-model word gesê omkeerbare te wees indien dit algebraïes gelykstaande aan 'n konvergerende oneindige orde AR model. Bevestig deur die, bedoel ons dat die AR koëffisiënte daal tot 0 as ons terug beweeg in die tyd. Inverteerbaarheid is 'n beperking geprogrammeer in die tyd reeks sagteware wat gebruik word om die koëffisiënte van modelle te skat met MA terme. Dit is nie iets wat ons gaan vir die data-analise. Bykomende inligting oor die inverteerbaarheid beperking vir MA (1) modelle word in die bylaag. Gevorderde teorie Nota. Vir 'n MA (Q) model met 'n bepaalde ACF, daar is net een omkeerbare model. Die noodsaaklike voorwaarde vir inverteerbaarheid is dat die koëffisiënte waardes sodanig dat die vergelyking 1- 1 y. - Q y q 0 het oplossings vir y wat buite die eenheidsirkel val. R-kode vir die voorbeelde in Voorbeeld 1, ons geplot die teoretiese ACF van die model x t 10 w t. 7W t-1. en dan nageboots N 150 waardes van hierdie model en geplot die monster tydreekse en die monster ACF vir die gesimuleerde data. Die R bevele gebruik word om die teoretiese ACF plot was: acfma1ARMAacf (Mac (0,7), lag. max10) 10 lags van ACF vir MA (1) met theta1 0.7 lags0: 10 skep 'n veranderlike genaamd lags wat wissel van 0 tot 10. plot (lags, acfma1, xlimc (1,10), ylabr, typeh, hoof ACF vir MA (1) met theta1 0.7) abline (H0) voeg n horisontale as om die plot die eerste opdrag bepaal die ACF en slaan dit in 'n voorwerp vernoem acfma1 (ons keuse van naam). Die plot opdrag (die 3de gebod) erwe lags teenoor die ACF waardes vir lags 1 tot 10. Die ylab parameter etikette die y-as en die belangrikste parameter sit 'n titel op die plot. Om te sien die numeriese waardes van die ACF net gebruik die opdrag acfma1. Die simulasie en erwe is gedoen met die volgende opdragte. xcarima. sim (N150, lys (Mac (0,7))) Simuleer N 150 waardes van MA (1) xxc10 voeg 10 tot gemiddelde 10. Simulasie gebreke maak beteken 0. plot (x, typeb, mainSimulated MA (1) data) ACF (x, xlimc (1,10), mainACF vir gesimuleerde steekproefdata) In Voorbeeld 2, ons geplot die teoretiese ACF van die model xt 10 wt 0,5 w t-1 0,3 w t-2. en dan nageboots N 150 waardes van hierdie model en geplot die monster tydreekse en die monster ACF vir die gesimuleerde data. Die R bevele gebruik was acfma2ARMAacf (Mac (0.5,0.3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typeh, hoof ACF vir MA (2) met theta1 0.5, theta20.3) abline (H0) xcarima. sim (N150, lys (Mac (0.5, 0.3))) xxc10 plot (x, typeb, hoof Gesimuleerde MA (2) Series) ACF (x, xlimc (1,10), mainACF vir gesimuleerde MA (2) Data) Bylae: Bewys van eiendomme van MA (1) vir belangstellende studente, hier is bewyse vir teoretiese eienskappe van die MA (1) model. Variansie: (teks (xt) teks (mu wt theta1 w) 0 teks (WT) teks (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wanneer h 1, die vorige uitdrukking 1 W 2. Vir enige h 2, die vorige uitdrukking 0 . die rede hiervoor is dat per definisie van onafhanklikheid van die WT. E (w k w j) 0 vir enige k j. Verder, omdat die w t het intussen 0, E (w j w j) E (w j 2) w 2. Vir 'n tydreeks, Pas hierdie resultaat aan die ACF hierbo kry. 'N omkeerbare MA model is die een wat geskryf kan word as 'n oneindige orde AR model wat konvergeer sodat die AR koëffisiënte konvergeer na 0 as ons oneindig terug in die tyd beweeg. Wel demonstreer inverteerbaarheid vir die MA (1) model. Ons het toe plaasvervanger verhouding (2) vir w t-1 in vergelyking (1) (3) (ZT wt theta1 (Z - theta1w) wt theta1z - theta2w) op tydstip t-2. vergelyking (2) word Ons het toe plaasvervanger verhouding (4) vir w t-2 in vergelyking (3) (ZT wt theta1 Z - theta21w wt theta1z - theta21 (Z - theta1w) wt theta1z - theta12z theta31w) As ons voortgaan ( oneindig), sou ons die oneindige orde AR model kry (ZT wt theta1 Z - theta21z theta31z - theta41z kolletjies) Nota egter dat as 1 1, die koëffisiënte die lags van Z vermenigvuldig sal toeneem (oneindig) in grootte as ons terug beweeg in tyd. Om dit te voorkom, moet ons 1 LT1. Dit is die voorwaarde vir 'n omkeerbare MA (1) model. Oneindige Bestel MA model In week 3, goed sien dat 'n AR (1) model kan omgeskakel word na 'n oneindige orde MA model: (xt - mu wt phi1w phi21w kolle phik1 w kolle som phij1w) Hierdie opsomming van verlede wit geraas terme is bekende as die oorsaaklike voorstelling van 'n AR (1). Met ander woorde, x t is 'n spesiale tipe MA met 'n oneindige aantal terme terug gaan in die tyd. Dit is 'n oneindige orde MA of MA () genoem. 'N Eindige orde MA is 'n oneindige orde AR en enige eindige orde AR is 'n oneindige orde MA. Onthou in Week 1, het ons opgemerk dat 'n vereiste vir 'n stilstaande AR (1) is dat 1 LT1. Kom ons bereken die Var (x t) met behulp van die oorsaaklike verteenwoordiging. Die laaste stap gebruik 'n basiese feit oor meetkundige reeks wat vereis (phi1lt1) anders sal die reeks divergeer. NavigationMoving Gemiddelde Hierdie voorbeeld leer jy hoe om die bewegende gemiddelde van 'n tydreeks in Excel te bereken. 'N bewegende avearge gebruik te stryk onreëlmatighede (pieke en dale) om maklik tendense herken. 1. In die eerste plek kan 'n blik op ons tyd reeks. 2. Klik op die blad Data, kliek Data-analise. Nota: cant vind die Data-analise knoppie Klik hier om die analise ToolPak add-in te laai. 3. Kies bewegende gemiddelde en klik op OK. 4. Klik op die insette Range boks en kies die reeks B2: M2. 5. Klik op die boks interval en tik 6. 6. Klik in die uitset Range boks en kies sel B3. 8. Teken 'n grafiek van hierdie waardes. Verduideliking: omdat ons die interval stel om 6, die bewegende gemiddelde is die gemiddeld van die vorige 5 datapunte en die huidige data punt. As gevolg hiervan, is pieke en dale stryk uit. Die grafiek toon 'n toenemende tendens. Excel kan nie bereken die bewegende gemiddelde vir die eerste 5 datapunte, want daar is nie genoeg vorige datapunte. 9. Herhaal stappe 2 tot 8 vir interval 2 en interval 4. Gevolgtrekking: Hoe groter die interval, hoe meer die pieke en dale is glad nie. Hoe kleiner die interval, hoe nader die bewegende gemiddeldes is om die werklike data punte. Hou jy van hierdie gratis webwerf Deel asseblief hierdie bladsy op GoogleThe Wetenskap van Vereniging: navorsing, onderrig en Dienslewering in die openbare belang is. UC San Diegos Afdeling Sosiale Wetenskappe is 'n diverse versameling van uitstaande departemente, programme en navorsing eenhede wat fokus op 'n paar van die mees dringende en belangrike kwessies van ons tyd. Die afdeling werk nie wat saak maak, nou en vir die toekoms. Departemente en programme departemente interdissiplinêre programme Ander interdissiplinêre programme en Studies Navorsing Centers Nuus en gebeure goeie skole vir Almal: Wanneer om te oorweeg Spesiale Ed In 'n onlangse Voice of San Diego podcast, 160Shana Cohen160of Onderwys Studies praat oor hoe kinders van verskillende agtergronde soms uiteenlopende vlakke te ontvang dienste vir ontwikkelings gestremdhede. Hou die datum 28 Oktober: Kontekstuele Robotics Forum 2016 Met Andrea Chiba, Virginia de sa and160Ayse Saygin160of Kognitiewe Wetenskap. Sosiale Wetenskappe Dean160Carol Padden160will gee opmerkings. Landmerk Nasionale Studie van adolessente brein nou aan die gang Die adolessente brein Kognitiewe Ontwikkeling studie sal volg 10,000 kinders vir 10 jaar, in vroeë volwassenheid. UC San Diego Interdissiplinêre Initiative160Hiring160 Die universiteit is die launch van 'n kampuswye inisiatief om verblyfreg-spoor of die vaste fakulteit navorsing te doen met die breë doel van die begrip van menslike kennis, leer en kreatiwiteit te huur. Nasies No 1 Openbare Universiteit UC San Diego is ingedeel die nommer een openbare universiteit in die land vir die versorging van die openbare belang, deur Washington Maandeliks.

Comments

Popular posts from this blog

Binary Options Belasting Uk

Binary Options Trading wette in die Verenigde Koninkryk is Binary Options Trading wettig in die Verenigde Koninkryk Ja, binêre handel is op hierdie oomblik wetlike en gereguleer in die Verenigde Koninkryk. Dit beteken dat handelaars is wettig in staat om finansiële instrumente aanlyn by UK gelisensieer binêre opsies makelaars handel. Dit beteken ook dat makelaars toegelaat word om Britse handelaars natuurlik aanvaar. Die Verenigde Koninkryk was een van die eerste Europese lande om finansiële verbintenis te wettig. Dit was omdat die Britse altyd een van die primêre lande is wanneer dit kom by forex in die verlede. Forex is baie soortgelyk aan binêre handel, sodat die Britse owerhede het besluit om aanlyn handel te wettig asook. Op die oomblik is finansiële diensverskaffers wat die registrasie van die Britse handelaars aanvaar twee keuses sal hê. Die eerste keuse is om aansoek te doen vir 'n Britse binêre opsies handelslisensie. Die tweede opsie is om aansoek te doen vir 'n lisen...

Cara Trek Dari Masterforex

Cara onttrek dari masterforex Cara onttrek dari masterforex Beginner forum kenners glo dat werk, tweede binêre. cloudflare Serial: 2020617511 Refresh: 10000 Probeer weer: 2400 verloop: maserforex Minimum-TTL: 3600 Veiligheid Veiligheid status van Top10binaryoptions. Trading strategieë x handel is 'n professionele Saxo kapitaalmarkte binêre handel met dxri ontwerp Saxo kapitaalmarkte binêre opsie Cara onttrek dari masterforex en spoedige oplossings vir. Mark werk huis toe sagteware real time te verstaan ​​vir die tweede strategie YouTube nifty opsies makelaar Barrons. Handelsvoorraad Options 'n Eenvoudige voorbeeld Stock Options is bloot 'n voertuig om 'n doel te bereik. Ons sal kyk na hierdie seine in meer besonderhede in die volgende afdelings op RSI en Stogastiese. Thepanies bedryf hierdie platforms kan nie geregistreer word om sake te doen in Kanada, en alle beleggers word aangemoedig om die registrasie van 'n makelaar of firma kyk voor te belê deur 'n besoek...

Bani Cu Forex

Ce hierdie Forex Forex, cunoscut si sub denumirea de FX hierdie un element sorg se refera la Piata valutara si 8220Da8221. Poti gesig Bani cu Forex prin Munca la domiciliu. Pentru a intelege mai bine cum functioneaza ITI vom prezenta urmatorul exemplu: Atunci cand calatoresti intr-o Tara straina vei gasi la Aeroport o Casa de schimb valutar. SA zicem ca ai la tand 100 dolari si tocmai ai ajuns in Japonia, is dié inseamna ca trebuie sa iti schimbi dolarii in yeni japonezi. Cand vei gesig is dié vei OBSERVA ca pentru 1 dolar primesti 100 yeni, Deci pentru 100 dolari vei Primi 10,000 yeni japonezi. In termeni forex ceea ce ai facut tu s-ar laster prin. vanzarea de dolari si cumpararea in acelasi timp n yenilor japonezi. Cand vei pleca din Japonia, vei vrea SA schimi yenii inapoi in dolari si vei OBSERVA un lucru interesant. Cursurile valutare s-au schimbat Ei bine tocmai acest lucru te poate ajuta SA faci Bani cu Forex, lucrand de acasa: ITI faci un vervolg gratis si de aici ai doua optiu...